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Brian Sperry* and Arthur B. Baggeroer™

Executive Summary: Ocean tomography involves use of long range sound
transmission to probe a region of interest. The resulting receptions on a vertical
array are processed with appropriate inversion methods to reveal properties of
the ocean’s sound speed and thermal structure. The theoretical framework for
such inversion methods have produced some mathematical questions concern-
ing the methods’ consistency and range of accuracy. This report documents
progress in quantifying the consistency and accuracy of some of the methods.
The work presented here may also be extended to more recent problems in-
volving shallow water and geoacoustic inversion.
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Theoretical and Numerical Issues
in Travel Time Tomography

B. Edward McDonald,

Brian Sperry” and Arthur B. Baggeroer”

Abstract:  Results from perturbation theory for changes in ocean acoustic
modal group speeds due to small environmental changes are investigated with
regard to their applicability to inversion schemes for large scale trends in the
ocean’s thermal structure. In regions where adiabatic mode theory is appli-
cable, the inverse problem for each vertical eigenmode consists of an integral
equation whose kernel involves the eigenfunction and its frequency derivative.
We give a proof for the so called ‘third term problem’ which requires equiva-
lence between two dissimilar integrals relating the perturbations in the water
column, the resulting perturbations in the acoustic eigenmode under consid-
eration, and the frequency derivative of the eigenmode. We give numerical
examples for the inversion kernel for four types of sound speed profiles, and
then explore numerically the parameter range (amplitude and scale size) in
which perturbation theory is accurate.

Keywords:  perturbation theory o acoustic inversion o ocean tomography
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1

Introduction

Perturbative approaches to ocean acoustic tomography [1, 2, 3] seek to estimate
changes in an assumed basic ocean state by measuring perturbations in acoustic
transmission properties. Large scale ocean experiments (e.g., HIFT[4], ATOC[5]
and SLICE89[6]) have recorded pulse arrivals on vertical hydrophone arrays, yielding
large amounts of path- integrated acoustic information concerning the state of the
ocean. A physically revealing way to display and/or process this information is to
employ modal filters[7, 8] and modal group travel time tomography.

Modal group travel time tomography relates arrival time information for individual
acoustic eigenmodes to details of sound speed structure in the water column(2] or
ocean bottom[9] within a vertical slice taken along a presumed horizontal path. In
the current work we investigate theoretical and numerical issues involving the ade-
quacy of perturbative methods to calculate modal group slowness changes resulting
from imposed perturbations in the water column. We assume sufficiently weak range
dependence so as to allow the use of adiabatic normal mode theory.

We will show that two independent derivations of perturbed modal group slowness
which appear to give different results[10] are actually consistent, as a result of a
reciprocity principle in Sturm- Liouville systems. The search for an adequate proof
of this consistency has been referred to as the ‘third term problem’.

We then investigate issues involved in the evaluation of the frequency derivative of
the acoustic eigenmode 8¢, (z,w)/Ow. This quantity plays a central role in per-
turbative inversion. In previous approaches (2, 3, 9, 11] one solves the appropri-
ate eigenvalue problem at two neighboring frequencies and evaluates the frequency
derivative by finite differences[12]. Finite differences may be sensitive to iteration
errors at high mode numbers or in situations where the two eigenvalue solutions
converge slowly. We offer an independent method in which an equation for Ay, /Ow
is solved directly.

We cast the perturbative inverse as a least squares problem, and derive numerical
estimates for the appropriate inversion kernel[13]. Our approach is consistent with
the range integrated formulation of Shang|3], allowing for different methods of eval-
uating &Y, /Ow. Rather than give sample inversions of synthetic data for a single
“canonical” sound speed profile as did Shang[3], we give numerical examples of the
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perturbative inversion kernel for the canonical profile and three other types of sound
speed profiles (SSP): a smooth mid- latitude SSP, a mostly upward refracting high
latitude SSP with strong surface interaction, and a double- ducted high latitude
SSP.

Next we investigate numerically the parameter range in which linear perturbation
theory yields accurate results for modal group slowness. In particular, we give
numerical examples for the canonical profile in which the error in the perturbation
method is calculated as a function of the amplitude and vertical extent of assumed
perturbations in the water column.
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2

Theory

In a weakly range dependent ocean environment, the acoustic field is described
by adiabatic mode theory with vertical eigenmodes Yn(z;z,y) where the vertical
coordinate is z, and the dependence of the environment on (z,y) is weak. The
eigenmodes 9, satisfy

8 -1 6'¢n w2 .2
par (7152) + Eay Ve = Faey) ®

with orthonormality

(Yns ¥m) =bnm @)

where 48, 5, is the Kronecker delta symbol

1 m=l
6"7"_{ 0 m#l

Boundary conditions are 1, = 0 at the pressure release surface z = 0, and ¢, — 0
for z — —o0, corresponding to mode trapping. In equation (1) p is density (allowing
for stratification in the ocean bottom), and the inner product (* , *) in (2)is

(A,B)E/p4ABdL (3)

For notational convenience we define slowness as the reciprocal of sound speed:

s(z;2,y) = c(z2,9) 7, (4)
so that for a time harmonic signal of radian frequency w the wavenumber field is
k(z;z,y) = ws(z;z,y). (5)

We represent (1) symbolically as
L §n = 3 (2,9) ¥n, (6)
where the linear operator L is

L = pB,p 18, + w?s%(z;z,y). (7)

.
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With the stated boundary conditions and real sound speed (no attenuation in the
basic state) the operator L is self adjoint.

We will supress the weak (z,y) dependence in what follows, so that functions f(z)
really represent f(z;z,y).

From (1) one has for the square of the modal horizontal wavenumber,

K121($7y) = (Yn, Lipn) » (8).

2.1 Acoustic Inversion and the Curious ‘Third Term Problem’

From equation (8) we may derive expressions relating assumed perturbations §s(z) in
the water column sound slowness to the resulting changes in modal group slowness.
Inversion schemes then attempt to relate variations in modal travel times (and thus
modal group slowness) to the water column variations ds(z;z,y). One can either
perturb (8) with respect to §s and then take a frequency derivative, or take the
frequency derivative of (8) and then perturb with respect to &s. Following these
different paths leads to very different looking results [10]; part of the goal of the
present paper is to show that they are indeed the same.

2.1.1 Frequency Derivative of the Perturbed System

Upon perturbing the sound slowness profile while keeping the ocean depth constant,
§ — s+ ds one has from (8)

268 = (n, Lo ) + (8, Libn) + 202 (%, 5350,

(9)

= 22 (Y, 09n) + 20 (Y, 5859 )
where we have invoked (6) in the second expression. Orthonormality (2) requires
that the first term on the right hand side of the second expression be zero, so that
the perturbation in the horizontal wavenumber is

w2

Skin = —(wn,sészbn). (10)

Kn
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The frequency derivative of (10) gives

9
Ow

Ok = 089

(11)
_ (2:7 _ :—;%’;i) (zpn,s&st/zn) + 2 (qpn, sas‘?;b”)

where 859 refers to the perturbation in the modal group slowness of mode n. Equa-
tion (11) gives the following integral for the perturbed group slowness:

dsd = dl p—l((2 .<>‘9)1p2 + 2w1/)n %n )s&sdz (12)

Kn

Equation (12) relates the perturbation in modal group slowness to the change
ds in the slowness distribution in an expression which requires knowledge of the
eigenfunction, its frequency derivative, and unperturbed modal parameters , and
$9 = Ok, /Ow. The perturbation §1, in the eigenfunction does not appear in (12),
having been eliminated by orthonormality.

2.1.2 Perturbation of the Frequency Derivative

Returning to (8), a frequency derivative gives

M

26,83 = 2( Lq/;n) + 2w (wn, ) (13)

The first term on the right is again zero due to (1) and orthonormality. The modal

group slowness is thus
w
g — 2 2 2
"= (v2,5) (14)

Perturbing. (14) with respect to ds now gives

§s9 = 2i {(zpn,s?(wn) + (¢n,sss¢n)] Skin “’2( 2,5%)

= i p‘ldz((Z - s-" )wnscs.s + 2521/),,51,[1")

Kn

(15)

The second expression here results from (10) and (14). Equation (15) gives the
change in the modal group slowness due to §s in an expression requiring knowlege
of eigenfunction, its response 6%, and and unperturbed modal parameters s, and
s9. The frequency derivative term in (13) is eliminated by orthonormality.

Equations (12) and (15) must give identical results for physical consistency, but they
differ in each of their third terms. Consistency of the third terms of (12) and (15)

-
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requires that the following general relation hold among the eigenfunction, its fre-
quency derivative, the imposed sound slowness perturbation, and the eigenfunction’s
response to the perturbation:

[ o s e btz L [ 07121, ) (16)
Equation (16) is a curious and unexpected relation that has been called the ‘third
term problem.” It points to a fundamental but not obvious role played by the
eigenmode’s frequency derivative in relating the water column perturbation ds to
the eigenmode’s response 6v,,. The importance of this frequency derivative term
in synthesizing time domain pulses using a narrow band approximation has been
established recently in numerical studies by LePage[14].

2.2  Reciprocity in Perturbed Sturm- Liouville Systems

We will show that equation (16) is not a constraint on the perturbations, but an
example of a general property of Sturm- Liouville eigenvalue problems of the form
Ly, = Aptpn, with orthonormality (Y, ¥m) = Opm. Let us represent the system and
its linear perturbation as

Lwn = /\n1/)n (17‘1)
L 6¢n + 6L o, = A, 89, + oA, Un, (17b)

and thus
(L = Ap) 8¢, = (0An —6L) . (18)

The left hand side of this equation is orthogonal to 9, so that the right hand side
must be also. As a result,

0An = (Yn, 8L ¥y,). (19)

Since the Sturm- Liouville eigenvalues ), are distinct, the operator (L — \,) has no
zeros on the vector space R, = {4;,7 # n} orthogonal to ,. Thus from (18)

0o = (L — )" (6An — 6L) ¥y,

=—(L- /\n)—l (JL@[’n)J_n ) (20)

where the subscript L, refers to projection onto R, (or equivalently orthogonal-
ization to ).

Now consider two linearly independent perturbations of the system §LU ), i=12
with responses 61/153 ) »J = 1,2 in the eigenfunctions. Consider the following cross

-6 -
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term between perturbations and responses resulting from (20):
(500,624, ) = = (L = xa) ™" (LV4n) ,6LP4n)
- — (1) - -1 (2)
= — (61D, (L= 2) ™ (529,) | ) (21)
= (8v, 6109,

In going from the first to second line of equation (21) we have invoked the self
adjointness of the operator L and therefore of (L — A,)~L. The latter expression on
the right side of (21) differs from the first by only the interchange of indices. Thus

(690,61 p) = (802,614, ) . (22)

This statement of index interchangability between independent perturbations é.L
and 87, in the inner product (22) brings to mind the forcing - response reciprocity
in many reversible physical systems.

2.3 Application to Tomographic Inversion

If we let L) refer to a frequency perturbation dw and §L(?) refer to a perturbation
§s(2) in the sound slowness profile, we have from (22) and (7)

(5¢gl),2w2s(z)as(z)¢n) = (9P, 20 dw 5*(2)¥n) - (23)

Dividing both sides by éw, taking its limit to zero, and supressing superscript (2)
for the eigenfunctions’ response to the sound slowness perturbation we have

n
(522 s(2)82)n ) = (S 502 ). (24)
which proves equation (16). We have thus established the equivalence of (12) and
(15). To summarize, we have established that the perturbed group slowness may be
calculated from either of the following equivalent expressions:

e L (G AL On
§s9 . P ((2 Hnsn)¢n+2w1/)n 0 )s&sdz

- P2 S—s%)gbﬁ&s + 25009 ) s dz.

Kn

(25)
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3

The Group Slowness Kernel K, (z)

Returning to the issue of relating changes in group travel time to the sound slowness
changes, one can derive from (20) an equation for the eigenfunction’s frequency
derivative. Let the perturbation be a change in frequency so that 6 = 2wdws?(z).
Dividing by éw and taking its limit to zero one has

‘?ﬁj" = ~2u(L = k2) ™Y (%%n ) 1 (26)

so that from (12),
56t = (2= F) s o) 42 ((-82) s S(2)55()3 )
(27)

where sf = k,/w is the modal phase slowness. One can rewrite (27) as in integral
equation

0s? = /dz ds(z)Kn(2), (28)

where
Kn() = o7 9ns(z){ (2 - %)m — 4 (L= )P (DYn)1n)  (29)

The shape of the kernel K,,(z) determines the sensitivity of the modal group slowness
to perturbations in slowness profile §s(z).

Equation (28) gives the inverse problem for changes in the ocean sound slowness
structure ds(z). Arrival time data from a vertical array of sufficient resolution can
be processed to yield changes 459 in modal group speeds. Knowlege of the functions
K, (z) determined from the unperturbed environment may be used in a least squares
inversion of (28) to be given below.

Normalization of K, (z) is obtained by multiplying (29) by c(z) and integrating. The
second term in the curly brackets of (29) makes no contribution to the normalization,
since it resides on R ,,. The result is

s / Kn(2)e(2)dz = (2 22). (30)

ols%
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For well- trapped modes group and phase speeds are very nearly equal, so that the
right hand side of (30) is nearly unity. For the results in Figures 1 and 2 below, the
right hand side of (30) falls in the range 1.0004 to 1.008.

3.1 Least Squares Inversion

In order to carry out least squares inversion of (28), we project the slowness pertur-
bation §s(z) onto the space of functions Ky (z2):

53(z)‘x = ZAnKn(z). (31)

Coefficients A,, are then determined by least squares minimization of the difference
between §s(z) and the right hand side of (31). Invoking (28), the result is
A = C 148, (32)
where the kernel correlation matrix C is given by
Crom = / K (2) Kom(2)dz. (33)
The inversion is now summarized as
§s(z) ~ K(z)TC14s8. (34)

Equations (30) - (34) give the approximate inversion of group slowness data to yield
the slowness perturbation in the water column, and are consistent with the range-
integrated formulation of Shang[3].
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4

Group Slowness Kernels for
Various Environments

In Figure 1 (a) are shown the first eight eigenmodes at a frequency of 70Hz for a
Munk sound speed profile with parameters z, = 1000m, B = 1300m, € = .0113, 5 =
(2 = 2,)/(B/2), co = 1480 m/s:

co(z) =c,[1+e(n+e7-1)], (35)

where z is taken to be positive downward. Figure 1 (b) gives the corresponding
inversion kernels K,(z) as calculated from (29). The equivalent ray turning points,
where the modal phase speed equals the local sound apeed, are marked on the
eigenfunctions and on the K,(z) for comparison. The K, (z) in Figure 1 (b) have
dimensions of inverse meters, with the full width of the abscissa representing 0.5m 1.

The K,(z) occupy approximately the same vertical extent as the eigenfunctions
Yn(z), but oscillate roughly twice as many times. This is to be expected from
the quadratic dependence of K, upon 1, in (29). The negative extrema in the
higher modes result from the operator inverse term in (29). Figures 1 (c,d) are the
eigenmodes and K, (z) for a smoothly varying deep water sound channel typical of
January near Ascension Island([15], where some HIFT data were taken. The two
smooth deep water sound speed profiles of Figures 1 (a,c) result in quite similar
eigenmodes and inversion kernels. For this reason we will use the Munk profile
in estimating the accuracy of the perturbative approach to ocean tomography in
Section 5.

In all the examples in this section, the group kernel has its first minimum (coming
up from the bottom) just below the lower ray turning point for the mode under
consideration (i.e., just below the lowest inflection point in ,), and then has a
large maximum just above the first extremum in %n. Strong surface interaction and
double ducting to be considered below complicate the near- surface behavior of K,.

Figures 2(a,b) illustrate a sound speed typical of the near- polar oceans with strongly
surface interacting modes. The SSP is from Levitus[16] for a point near Heard Island
(538, 74E), where the ocean is 1500m deep. Below 1500m we have extended the
profile by assuming a hydrostatic sound speed gradient. The modes shown are not
bottom interacting, so this extension of the SSP does not affect the results. The

~10 -
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amplitude of K, for this surface- limited SSP is larger than either of the two deep
ocean SSP’s illustrated, indicative of high dispersion.

Figures 2(c-d) show an SSP with a double duct typical of a point (44S, 41E) north-
west of Crozet Island in January[17]. Modes 7 and 8 are partially trapped in the
duct, and show increased group slowness sensitivity near the secondary duct.

For a smooth deep water SSP such as that of Figures 1(a,c), modal group slowness
sensitivity to water column slowness is greatest near outer inflection points (corre-
sponding to ray turning points). The highly dispersive SSP of Figures 2(a,b) shows
about three times the sensitivity as the smooth deep water case. But again, maxi-
mum sensitivity occurs just inside the ray turning point locations. Double ducting
(Figures 2(c,d)) complicates the relation between water column perturbations and
group slowness response. There is only weak sensitivity in the upper water column
for modes 2 - 6 (Figure 2(d)), but modal resonances with the secondary duct produce
large responses of opposite sign for modes 7 and 8.

The results of Figures 1 and 2 support the unsurprising conclusion that group slow-
ness perturbations are most sensitive to sound speed changes near turning points
in a ray description, but with the added complication that the sign of the inversion
kernel near the turning points may be positive or negative in a double ducted SSP.

The formalism provided here gives information about the projection of slowness per-
turbations §s(z) on the non orthogonal oscillatory functions K, (z), whose behavior
is illustrated in the right hand panels of Figures 1 and 2. For a mid latitude SSP
such as that of Figure 1 (c) the response of the modal group slowness to slowness
changes in the water column is weak, and peaks at upper and lower turning points.
The more restricted polar SSP of Figure 2 (a) reveals increased sensitivity of the
group slowness to ds(z) due to the vertical confinement of the eigenmodes. The
double ducted SSP of Figure 2 (c) shows increased sensitivity in modes which are
partially trapped in the near- surface ducts. In a previous investigation [13] corre-
lation matrices C for three of the above SSP’s were investigated, and were found to
be diagonally dominant (the Munk profile of Figure 1 (a) was not considered in that
work). This reflects the general well- conditionedness of the least squares inversion
technique.

As one considers higher and higher mode numbers, one finds a transition from mode
trapping near the sound axis to strong surface interaction. This is illustrated for
the Munk SSP in Figure 3 where the K, for the first 60 modes are given. One sees
a monotonic tendency of the group slowness kernel to become strong approaching
the lower turning point, and weak near the surface. In a ray description this would
correspond to a surface interacting ray spending more time near the turning point
than near the surface.

-11 -
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(a) Eigenfunctions f = 70 Hz (b) Group Kernel f = 70 Hz
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Figure 1 (a) The first 8 eigenmodes and (b) group slowness kernels for the Munk
profile of eq. (35). (c) Eigenmodes and (d) group slowness kernels for an SSP taken
near Ascension Island in January. The horizontal marks on each plot give the upper
and lower ray turning points. Each plot is terminated where the amplitude of the
function permanently falls below .001 times its mazimum amplitude.
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Figure 2 (a) and (b): Results for a near - polar SSP with strong surface interac-
tion. (c) and (d): Results for a double ducted SSP. Other details are as in Figure
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Group Slowness Kernel f=70Hz
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Figure 3 Group slowness kernel K, for the first 60 modes resulting from the Munk

SSP of eq. (85). Upper and lower turning depths for each mode are indicated by
curved lines.
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5

Limitations on the Linear Perturbation Method

We will now give some numerical examples in which perturbation theory results
are accurate, followed by some in which the accuracy is degraded. Further studies
of the parameter region in which one may use perturbation theory are underway
and will be published elsewhere. The first example will compare §s7, as determined
from (28) with that found by solving equations (1) and (14) for two different envi-
ronments whose sound slowness differs by 6s(z). The eigenmodes were computed
using Kraken[18]. The unperturbed case is taken to be that of the Munk SSP of eq.
(35). A Hanning window was used to create the perturbation signal with a given

amplitude, extent and depth location:

2 1r(z—z,,) _ A 2
5 _ ) acos?(Fg®) |z — 2| < Aw/ 36
o(2) { 0 |z — 2zp| > Aw/2 (36)
Figure 4 shows dsJ for Aw = 50m and amplitude o = —1 X 107%s/m, leading to a

peak sound speed perturbation of about 2.25 m/s. The 50m width is smaller than
most vertical correlation scales encountered in the deep ocean and is used mainly to
illustrate a case of good qualitative agreement between the linear and exact methods.
The linear perturbation result of Figure 4 (a) accurately method captures the high
frequency structure seen in the higher modes. In fact one can match the oscillations
in Figure 4 (a) to those seen in Figure 3. The smallest oscillation has a vertical
wavelength of about 60 m, on par with the 50 m perturbation scale. The actual
perturbation seen in Figure 4 (b) as computed from equations (1) and (14) for the
two different environments is almost indistinguishable from the linear perturbation
result (28).

Next we give an example in which the linearized and exact group slowness pertur-
bations are considerably different. Figure 5 gives results for slowness perturbations
in the water column as in Figure 4, but with the Hanning width increased to 200m.
We show linear versus actual results §s¢ for mode 9 in Figure 5 (a) and for mode
21 in Figure 5 (b). One sees that the linear result for these modes is off by ap-
proximately 30% to 50% with the highest errors occuring when the perturbation is
near the modal turning points. The error is oscillatory with a vertical wavelength
comparable to that of the group slowness kernel.

If a perturbation width of 50m gives good agreement between linear and exact
results, we must ask why an increase to 200m produces such poor agreement. After

—15 -
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all, one could approximate the 200m width window by a linear superposition of 50m
windows properly spaced. The answer is that that ds?, is not linear with respect
to changes in the environment, so that a linear approximation must begin to fail
somewhere. By enlarging the width from 50 to 200m we have perturbed more of the
water column, even if the pointwise changes in the water column are of the same
magnitude.

To illustrate the onset of nonlinear dependence of dsj, on perturbation amplitude
and width, we give in Figure 6 (a) the difference between linear and actual 6sd for
mode 9 as a function of both these parameters with the depth of the perturbation
kept constant at 250m. This depth is above the upper turning point of mode 9
by approximately 250m. One sees that as the perturbation amplitude increases
from zero, the error in the linear expression (28) develops a strong maximum for
Aw = 500m and o = 3 x 107 s/m. Then for A > 1000m, the error is negative
for both positive and negative a. A contour is drawn where the amplitude of the
group slowness error is 1078 s/m, corresponding to travel time accuracy of 10ms
per 1000km. This level is a nominal figure for accurate ocean basin scale acoustic
tomography. For mode 9 at the stated perturbation depth of 250m, the slowness
perturbation amplitude needs to be smaller than approximately 106 s/m to achieve
this nominal level of accuracy for the linear expression (28).

Figure 6 (b) repeats the calculation of Figure 6 (a) for mode 21. Here the error
in the linear expression is always negative, and the amplitude limit for the nominal
accuracy level is even more restrictive on « for perturbation widths Aw < 800m. For
Aw > 800m, the nominal amplitude limit o < 106 s/m still applies for the linear
method to give group slowness accuracy within 10~8 s/m. The consistent negative
bias for the linear method at large vertical scale lengths Aw implies, at least for the
modes under consideration, that the linear method may give biased group slowness
perturbations even for a horizontally zero- mean field of water column perturbations.
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Figure 4 (a) Linearized group slowness perturbation at 70Hz from (28) for a Han-
ning window perturbation (36) of the Munk SSP; (b) Actual group slowness change
calculated directly from the two different SSP’s.
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Figure 5 Linear and actual group slowness perturbations for a 200m width Han-
ning perturbation pulse for modes 9 and 21 at 70Hz. The upper two curves in each
plot are the unperturbed modeshape 1, (z) (solid line) and the group slowness kernel

K, (2) (dashed). Below those are three lines, gwing the actual §s% (solid), linearized
version (dashed) and their difference (dotted).
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Figure 6 Error in the linear result for group slowness perturbation at 70Hz for
modes 9 (top) and 21 (bottom) as a function of perturbation width Aw and amplitude
a. The perturbation to the sound slowness profile is centered at a depth of 250m.
The black contour shows the region in which the error is smaller than the nominal
value 1078 s/m, considered acceptable for ocean basin scale tomography.

- 19 -




SACLANTCEN SR-333

6

Summary

We have demonstrated that the ‘third term problem’ stated in equation (16), which
one encounters in ocean acoustic inversion, is an identity which emerges as an in-
herent property of Sturm - Liouville systems such as equation (1) for ocean acoustic
eigenmodes. This result establishes a fundamental but not obvious role played by
the eigenmode’s frequency derivative in relating a water column perturbation to
the eigenmode’s response. We have given a method for evaluating the frequency
derivative of the eigenmode which may be a useful alternative to finite differences.

When linear perturbation theory may be used, we have expressed modal group
slowness changes as an integral equation (28) in ds(z), the water column sound
slowness perturbation. Equations (29) - (34) give an approximate least squares
inversion for §s(z) in terms of the modal group slowness perturbations which is
consistent with that of ref[3].

The kernel of the integral equation has been given numerically in Figures 1 and 2
for four sound speed profiles: The Munk SSP, a smooth mid- latitude SSP, a mostly
upward refracting high latitude SSP with strong surface interaction, and a double-
ducted high latitude SSP. The first two SSP’s show similar response to water column
perturbations, but the last two show increased sensitivity at the lower turning point
for the high latitude SSP, and in the surface ducts for the last SSP considered.

We then examined the accuracy of the linear perturbation method and found de-
creased accuracy at large perturbation amplitude (|§s(z)| < 10=%s/m for which
|dc(z)| R 2.25m/s) and at large vertical perturbation width (Aw < 50m) for the
modes considered. We also found that for large perturbation width the linear per-
turbation method gave biased results. It appears from other work (not presented
here but under investigation for future publication) that the sign of the bias may
depend on whether the water column perturbation is inside or outside the modal
turning points.
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